• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Technical Information Systems
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Suche öffnen
  • WIWI
  • Mein Campus
  • UnivIS
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Friedrich-Alexander-Universität Chair of Technical Information Systems
Navigation Navigation close
  • Team
  • Teaching
  • Theses
  • Publications
  • Projects
  • Open Positions
  • Contact
  1. Home
  2. Theses
  3. [MA] A Knowledge Graph from Financial Reports

[MA] A Knowledge Graph from Financial Reports

In page navigation: Theses
  • [MA] A Knowledge Graph from Financial Reports
  • [MA] An Interactive Hypertext-based Linked Data Browser
  • [MA] Identifikation von IIoT Anwendungen und deren Beschreibung in der Literatur für den Aufbau einer Anwendungsdatenbank
  • [MA] REST Principles and IoT Protocols
  • [MA] Text2Turtle (T2T) -The transformation of Wikipedia texts into a Knowledge Graph
  • [MA] Verification of Systems-of-Systems using Model Checking
  • Thesis: Interfacing agent modeling software with RDF
  • Thesis: On matching agent intents with Web affordances

[MA] A Knowledge Graph from Financial Reports

Start: 11.01.2021

End: 02.08.2021

Type: Master thesis

Student: Pornchana Kveeyan

Supervisor: Prof. Dr. Andreas Harth, Daniel Schraudner

Abstract: XBRL or eXtensible Business Reporting Language is an XML-based language that organizations use to exchange business information. While XBRL is readable by machine, iXBRL or inline XBRL has been further developed to enable both machine and human readabilities.

An objective of this thesis is to use an RDF Mapping Language tool and transform such iXBRL-formatted financial reports and other information into an RDF presentation. Subtle business and industry insights can be discovered through a knowledge graph creation. In doing this, it would allow us to further connect the graph to other existing knowledge graphs in the market. The graph can continuously generate knowledge and grow over time. The data used in this thesis is extracted from Companies House.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Wirtschaftsinformatik, insbesondere Technische Informationssysteme

Lange Gasse 20
90403 Nürnberg
  • Press
  • Intranet
  • Legal notice
  • Privacy
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up