• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Technical Information Systems
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Suche öffnen
  • WIWI
  • Mein Campus
  • UnivIS
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Friedrich-Alexander-Universität Chair of Technical Information Systems
Navigation Navigation close
  • Team
  • Teaching
  • Theses
  • Publications
  • Projects
  • Open Positions
  • Contact
  1. Home
  2. Theses
  3. [MA] Text2Turtle (T2T) -The transformation of Wikipedia texts into a Knowledge Graph

[MA] Text2Turtle (T2T) -The transformation of Wikipedia texts into a Knowledge Graph

In page navigation: Theses
  • [MA] A Knowledge Graph from Financial Reports
  • [MA] An Interactive Hypertext-based Linked Data Browser
  • [MA] Identifikation von IIoT Anwendungen und deren Beschreibung in der Literatur für den Aufbau einer Anwendungsdatenbank
  • [MA] REST Principles and IoT Protocols
  • [MA] Text2Turtle (T2T) -The transformation of Wikipedia texts into a Knowledge Graph
  • [MA] Verification of Systems-of-Systems using Model Checking
  • Thesis: Interfacing agent modeling software with RDF
  • Thesis: On matching agent intents with Web affordances

[MA] Text2Turtle (T2T) -The transformation of Wikipedia texts into a Knowledge Graph

Start: 01.12.2020

End: 29.06.2021

Type: Master thesis

Student: Christian Klose

Supervisor: Prof. Dr. Andreas Harth, Zhou Gui

Abstract: With the rise of voice assistants and semantic search comes a need for Knowledge Graphs as they are the fundamental building block enabling these technologies. This thesis deals with the automated Knowledge Graph Construction (KGC) from unstructured data. Predominantly, the focus is on Open Information Extraction (Open IE), an unsupervised learning approach that attempts to extract triples from text independent of their domain and, hence, it is the first step towards automated Knowledge Graph Construction. Previous work mainly applied Open IE Systems to English texts. In this thesis, the focus is on German texts. Due to the lack of German Open Information Extraction datasets, a dataset will be created. Two novel Open Information Extraction Systems for German will be introduced. A naive attempt to create a Knowledge Graph from the extracted triples is described. The performance of the systems is evaluated. Finally, the results of the evaluation as well as for the transformation process will be reported.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Wirtschaftsinformatik, insbesondere Technische Informationssysteme

Lange Gasse 20
90403 Nürnberg
  • Press
  • Intranet
  • Legal notice
  • Privacy
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up